Eric Chang

echang7@stanford.edu | changeric.com | 480 277 4088

EDUCATION

Stanford University, Stanford, CA Ph.D., Mechanical Engineering, expected Sept. 2020, GPA: 3.83 M.S., Mechanical Engineering, 2017, GPA: 3.74

<u>SKILLS</u>

Aerial Robotics – design, modeling, and fabrication of novel winged small aircraft configurations. Aerodynamics (AVL, XFLR5), propulsion (XROTOR), actuation, autopilots, flight test operations (FAA Part 107 certified)

Prototyping/Mechatronics – fabrication (CAD/CAM, 3D printing, laser cutting, CNC machining), electronics (PCB design, soldering, microcontrollers), actuators, mechanisms

Software – MATLAB, Solidworks, Python, C++, LabVIEW

Arizona State University, Tempe, AZ B.S., Mechanical Engineering, 2015, GPA: 3.96

Experimental Setups – rapid 8020 design, motion capture (Vicon, Qualisys), instrumentation (3D anemometers, microphones, imaging, load cells, DAQs), high speed video (Phantom), motion control, wind tunnels

Documentation/Presentation – photography, videography, lighting, Adobe (Illustrator, Lightroom, InDesign, Premiere Pro)

Languages – Mandarin Chinese (limited working proficiency), Spanish (limited working proficiency)

EXPERIENCE

Ph.D. Candidate, Bio-Inspired Research & Design (BIRD) Lab, Stanford University 2015-present Developing avian-inspired flying robots to study how birds use wing and tail morphing for flight control. Advisor: David Lentink Designed and flight tested a biohybrid feathered morphing wing robot that underactuates the motion of 40 wing • feathers and a vertical tailless biohybrid feathered morphing tail robot with 4 active degrees of freedom Designing a peregrine falcon-inspired robot for high speed and supermaneuverability Intern, Global Supply Management Substrates & Assembly, Intel Corporation 2014, 2015 Two summer internships collaborating with international suppliers to design CPU substrates assembly equipment Undergraduate Researcher, Biomechatronics Lab, Arizona State University 2011-2016 Developed contactless proprioception system for anthropomorphic robotic hand and conducted human grasp study on object handovers. Advisor: Veronica Santos Intern, Mechanical Engineering, Ventana Medical Systems 2013 Developed a system for detecting clogs in a robotic syringe pump used in a tissue staining robot Mechatronics Engineering Intern, Engineering Science Analysis Corp 2012-2014 Conducted prototype design, fabrication, testing, performance analysis, and engineering documentation for a nonlethal diver ensnaring device from Technology Readiness Level 5 to 9 Intern, NASA Dryden Flight Research Center 2010 Modeled and flight-tested performance of Dryden Remotely Operated Integrated Drone (DROID)

ACTIVITIES/OUTREACH

Creativity in Research Scholar, Hasso Plattner Institute of Design at Stanford (d.school) (2019) – Designing tools to aid academic researchers in communicating their work via photo and video

President/Project Manager, Air Devils Aeronautics (2011-2015) – Lead a team to compete an unmanned aerial system in the yearly AIAA Design Build Fly competition. Ranked 17th of 100 teams

Sound Engineer, Peninsula Bible Church (2016-Present) – Mix front of house and monitors for weekly services and other special events

Mentor, *FIRST* Robotics Competition, Corona del Sol HS, McClintock HS, Singapore American School Robotics Teams (2007-2013) - Taught high school students engineering & teamwork skills to design, fabricate, and compete a 120lb robot

PUBLICATIONS

Archival Journal Articles

Matloff, L. Y., **Chang, E.**, Feo, T. J., Jeffries, L., Stowers, A. K., Thomson, C., and Lentink, D. (2020). How flight feathers stick together to form a continuous morphing wing. *Science*, 367(6475), 293–297.

Chang, E., Matloff, L. Y., Stowers, A. K., and Lentink, D. (2020). Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. *Science Robotics*, 5(38). *Selected for cover*

Quinn, D., Kress, D., **Chang, E.**, Stein, A., Wegrzynski, M., and Lentink, D. (2019). How lovebirds maneuver through lateral gusts with minimal visual information. *Proceedings of the National Academy of Sciences*, 116 (30) 15033-15041

Hellman, R.B., **Chang, E.**, Tanner, J., Helms Tillery, S.I., and Santos, V.J., "A robot hand testbed for enhancing embodiment and functional neurorehabilitation of body schema in upper limb impairment or loss." *Frontiers in Human Neuroscience*, 9 (26), 1-10.

Refereed Conference Proceedings Abstracts

Chang, E. and Lentink, D. "Biohybrid morphing tail aerial robot." 9th International Symposium on Adaptive Motion of Animals and Machines (AMAM 2019), Lausanne, Switzerland, Aug. 20-23, 2019.

Hellman, R.B., **Chang, E**., Tanner, J., Helms Tillery, S.I., and Santos, V.J., "A robot hand testbed for enhancing embodiment and functional neurorehabilitation of body scheme in upper limb amputees." *Myoelectric Controls Symposium*, New Brunswick, Canada, Aug. 18-22, 2014.

Hellman, R.B., **Chang, E**., and Santos, V.J. "Tendon-driven testbed for haptic exploration and sensory event-driven grasp and manipulation." *IEEE Haptics Symposium*, Houston, TX, Feb. 23-26, 2014, *Hardware demonstration D78*.

Non-refereed Conference Proceedings Abstracts

Chang, E. and Lentink, D. "A Bio-hybrid Morphing Tail for Vertical Tailless Gliding Flight" *Society of Integrative & Comparative Biology Annual Meeting*, Tampa, FL, Jan. 3, 2019.

Chang, E., Matloff, L. Y., Stowers, A. K., and Lentink, D. "Feathered wings: how underactuated wings morph to widen the performance envelope of gliding flight" *Society of Integrative & Comparative Biology Annual Meeting*, San Francisco, CA, Jan. 3, 2018.

Chang, E. and Lentink, D. "How Pigeon-inspired Morphed Wings Affect Glide Performance in Turbulence." *Society of Integrative & Comparative Biology Annual Meeting*, New Orleans, LA, Jan. 5, 2017.

Hellman, R.B., **Chang, E**., Tanner, J., Helms Tillery, S.I., and Santos, V.J. "Tendon-driven testbed for haptic exploration and sensory event-driven grasp and manipulation." *DARPA MTO Sensorimotor Prosthetics Workshop*, Scottsdale, AZ, Feb. 13, 2014.

Hellman, R.B., **Chang, E**., and Santos, V.J. "Tendon-driven testbed for haptic exploration and sensory event-driven grasp and manipulation." *Piper Health Solutions Workshop on Rehabilitation Robotics*, Tempe, AZ, Feb. 28 - Mar. 1, 2014.

<u>MEDIA</u>

NPR, National Geographic, Scientific American, Popular Science, The Colbert Report, and others, 2019-2020, Featured in many news articles, magazine articles, and videos for my work in developing PigeonBot during my PhD.

Stanford News, 2018, Featured in article and video titled 'Stanford undergraduates learn to make delivery drones' for my involvement in teaching an aerial robot design course at Stanford University.

Instructables, 2014, Featured on the front page of Instructables for a "Recycled Motherboard RC Quadcopter" resulting in over 56,000 views. **Hackaday Weblog**, 2014, Featured in an article titled "Quadcopter Built From Recycled Motherboards".

NASA Dryden News & Features, 2010, Featured in article titled "NASA Dryden's INSPIRE Interns Learn Flight Testing First-hand"

Robot Magazine, 2008, Project featured in "Leading Edge Robotics News" for runner up entry in the Grant Imahara VEXPlorer Robot Challenge